Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Clin Invest ; 132(4)2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1705312

ABSTRACT

Many SARS-CoV-2 neutralizing antibodies (nAbs) lose potency against variants of concern. In this study, we developed 2 strategies to produce mutation-resistant antibodies. First, a yeast library expressing mutant receptor binding domains (RBDs) of the spike protein was utilized to screen for potent nAbs that are least susceptible to viral escape. Among the candidate antibodies, P5-22 displayed ultrahigh potency for virus neutralization as well as an outstanding mutation resistance profile. Additionally, P14-44 and P15-16 were recognized as mutation-resistant antibodies with broad betacoronavirus neutralization properties. P15-16 has only 1 binding hotspot, which is K378 in the RBD of SARS-CoV-2. The crystal structure of the P5-22, P14-44, and RBD ternary complex clarified the unique mechanisms that underlie the excellent mutation resistance profiles of these antibodies. Secondly, polymeric IgG enhanced antibody avidity by eliminating P5-22's only hotspot, residue F486 in the RBD, thereby potently blocking cell entry by mutant viruses. Structural and functional analyses of antibodies screened using both potency assays and the yeast RBD library revealed rare, ultrapotent, mutation-resistant nAbs against SARS-CoV-2.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/genetics , Antibody Affinity , B-Lymphocytes/immunology , Binding Sites/genetics , Binding Sites/immunology , Broadly Neutralizing Antibodies/blood , Broadly Neutralizing Antibodies/genetics , COVID-19/therapy , Cloning, Molecular , Disease Models, Animal , Humans , Immunization, Passive , Immunoglobulin G/immunology , In Vitro Techniques , Lung/virology , Mice , Mice, Inbred BALB C , Mutation , Neutralization Tests , Receptors, Virus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Serotherapy
2.
PLoS One ; 16(3): e0248957, 2021.
Article in English | MEDLINE | ID: covidwho-1146198

ABSTRACT

The characteristics and evolution of pulmonary fibrosis in patients with coronavirus disease 2019 (COVID-19) have not been adequately studied. AI-assisted chest high-resolution computed tomography (HRCT) was used to investigate the proportion of COVID-19 patients with pulmonary fibrosis, the relationship between the degree of fibrosis and the clinical classification of COVID-19, the characteristics of and risk factors for pulmonary fibrosis, and the evolution of pulmonary fibrosis after discharge. The incidence of pulmonary fibrosis in patients with severe or critical COVID-19 was significantly higher than that in patients with moderate COVID-19. There were significant differences in the degree of pulmonary inflammation and the extent of the affected area among patients with mild, moderate and severe pulmonary fibrosis. The IL-6 level in the acute stage and albumin level were independent risk factors for pulmonary fibrosis. Ground-glass opacities, linear opacities, interlobular septal thickening, reticulation, honeycombing, bronchiectasis and the extent of the affected area were significantly improved 30, 60 and 90 days after discharge compared with at discharge. The more severe the clinical classification of COVID-19, the more severe the residual pulmonary fibrosis was; however, in most patients, pulmonary fibrosis was improved or even resolved within 90 days after discharge.


Subject(s)
Artificial Intelligence , COVID-19/pathology , Pulmonary Fibrosis/diagnosis , Thorax/diagnostic imaging , COVID-19/complications , COVID-19/virology , Female , Humans , Image Processing, Computer-Assisted , Interleukin-6/metabolism , Male , Middle Aged , Patient Discharge , Pulmonary Fibrosis/etiology , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index , Tomography, X-Ray Computed
3.
Risk Manag Healthc Policy ; 14: 233-236, 2021.
Article in English | MEDLINE | ID: covidwho-1050538

ABSTRACT

A 55-year-old man was treated at the village hospital with six months medical history of recurrent chills and fever. Due to the lack of imaging examination, antipyretic and anti-infective medications were given. Although symptomatic treatment can relieve fever symptoms, symptoms easily flare up again two to three days after taking the drug. Later, the patient suffered from fever again during the COVID-19 epidemic and was sent to our hospital for isolation and treatment. During this hospitalization, chest CT examination is mandatory for all patients in order to meet the requirements of epidemic prevention and control. This led to the inadvertent discovery of a large cystic solid mass in the right thoracic cavity communicating with the esophageal lumen. The patient was preliminarily diagnosed as giant midesophageal diverticulum after three-dimensional CT image reconstruction of the chest was reviewed. Considering the patient's persistent fever with poor nutritional status, we decided to temporarily place two gastric tubes (diverticulum decompression and gastrointestinal nutrition), and antibiotics were used at the same time as another main treatment. However, after the symptoms eased and nutritional status improved, he refused all further treatment. We believe that this patient's diverticulum is very classic, and the treatment plan is highly integrated with the needs of epidemic prevention and control and achieves a satisfactory therapeutic effect, so we hope to provide colleagues with new diagnosis and treatment enlightenment through this case.

SELECTION OF CITATIONS
SEARCH DETAIL